Lezione

Progetto di Strutture

Definizione dell'orditura dei solai e della posizione di travi e pilastri

La struttura deve essere in grado di portare

- carichi verticali
- azioni orizzontali equivalenti al sisma

Obiettivi generali

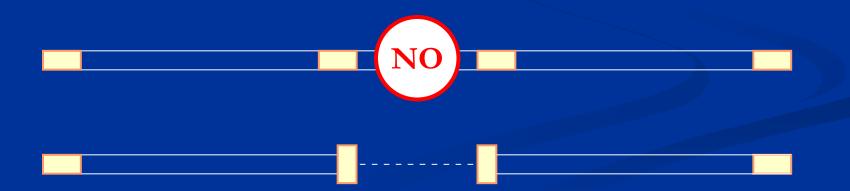
Rendere la struttura il più regolare possibile

- Valutare la possibilità di dividere il fabbricato in blocchi staticamente separati da giunti
- Prestare molta attenzione alla scala
 - La soluzione con travi a ginocchio introduce elementi molto rigidi con conseguente
 - concentrazione delle sollecitazioni e riduzione della duttilità globale
 - possibilità di introdurre una forte asimmetria nella distribuzione di rigidezze

Travi e pilastri portano sia carichi verticali che azioni orizzontali

Può essere utile scindere il problema in due fasi :

- Impostare la carpenteria pensando innanzitutto ai soli carichi verticali tenendo però presenti i criteri derivanti dalla contemporanea presenza di azioni orizzontali
- 2. Rivedere la carpenteria per renderla più idonea a sopportare azioni orizzontali

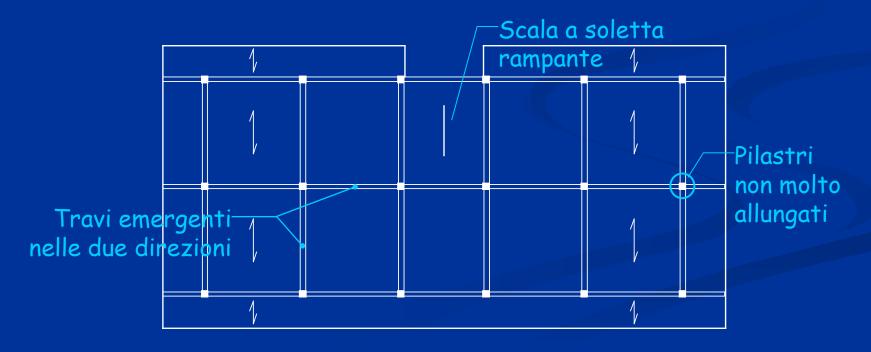

Nell'impostazione per carichi verticali:

 Adottare per le luci di sbalzi, solai e travi limiti massimi leggermente inferiori a quelli consigliati in assenza di sisma

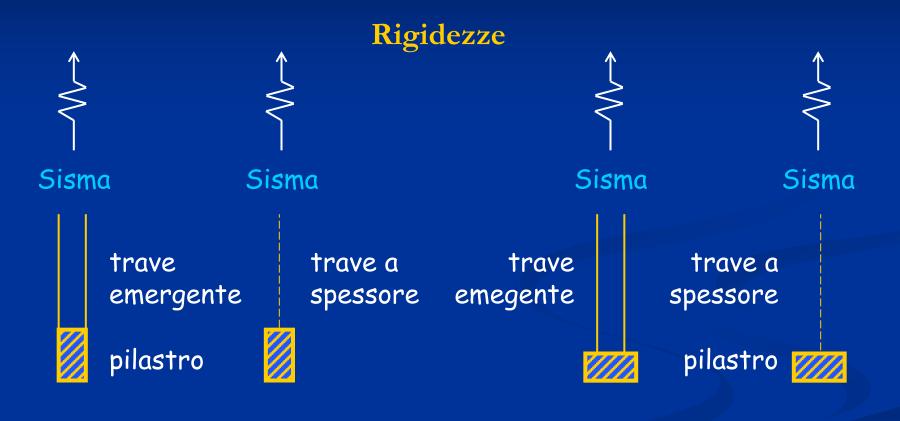
Elemento	Per soli carichi verticali	In zona sismica
Solaio	7.00 m	6.00 m
Sbalzo	2.50 m	2.00 m
Trave emergente che porta rilevanti carichi verticali	6.00 m	5.50 m
Trave a spessore che porta rilevanti carichi verticali	5.00 m	4.50 m

Nell'impostazione per carichi verticali:

- Adottare per le luci di sbalzi, solai e travi limiti massimi leggermente inferiori a quelli consigliati in assenza di sisma
- Evitare campate di trave troppo corte, che provocherebbero concentrazione di sollecitazioni



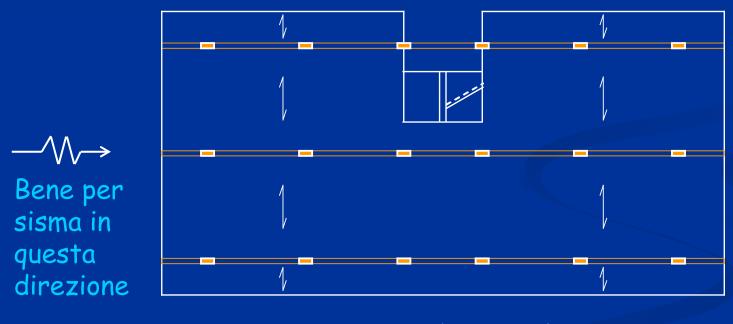
Nell'impostazione per carichi verticali:

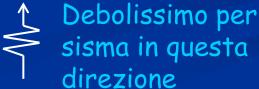

- Adottare per le luci di sbalzi, solai e travi limiti massimi leggermente inferiori a quelli consigliati in assenza di sisma
- Evitare campate di trave troppo corte, che provocherebbero concentrazione di sollecitazioni
- Evitare forti disuniformità di carico verticale sui pilastri (carichi maggiori richiedono sezioni maggiori, che provocherebbero concentrazione di sollecitazioni)

Nell'impostazione per azioni orizzontali:

- Garantire un irrigidimento uniforme nelle due direzioni, con elementi ben distribuiti in pianta

Elementi resistenti alle azioni orizzontali

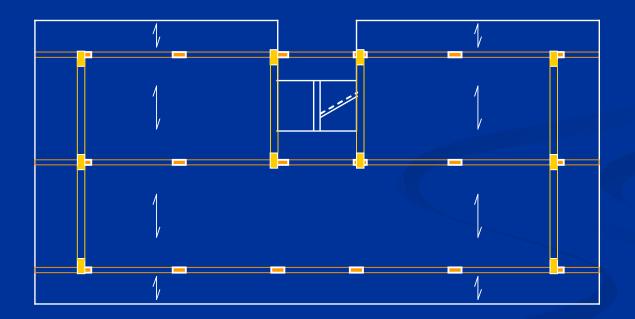



Buona rigidezza a tutti i piani Buona rigidezza solo al primo piano Rigidezza limitata a tutti i piani Rigidezza trascurabile a tutti i piani

Carpenteria:

da soli carichi verticali ad azioni orizzontali

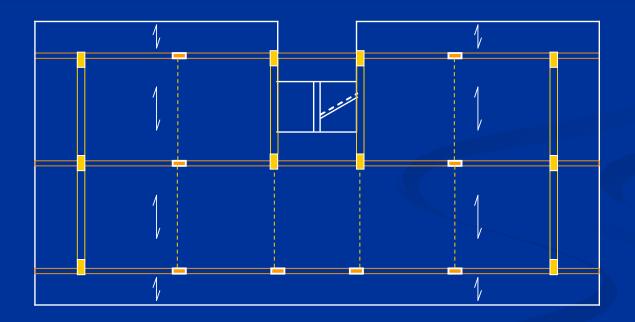
Al limite, per soli carichi verticali:



Carpenteria:

da soli carichi verticali ad azioni orizzontali

Interventi, per azioni orizzontali:


Orientare diversamente alcuni pilastri

Aggiungere travi emergenti

Carpenteria:

da soli carichi verticali ad azioni orizzontali

Interventi, per azioni orizzontali:

Si potranno poi aggiungere altre travi, a spessore, che sono però irrilevanti ai fini sismici

Esempio

Edificio analizzato

Tipologia: edificio adibito a civile

abitazione, a 5 piani

Classe dell'edificio: classe 2 (costruzione con

normale affollamento, senza

contenuti pericolosi e funzioni

sociali essenziali)

Ubicazione: zona sismica media intensità

Categoria di suolo: categoria C (sabbie e ghiaie

mediamente addensate)

Edificio analizzato

Struttura portante

principale:

Solai:

Scale:

Fondazioni:

Materiali:

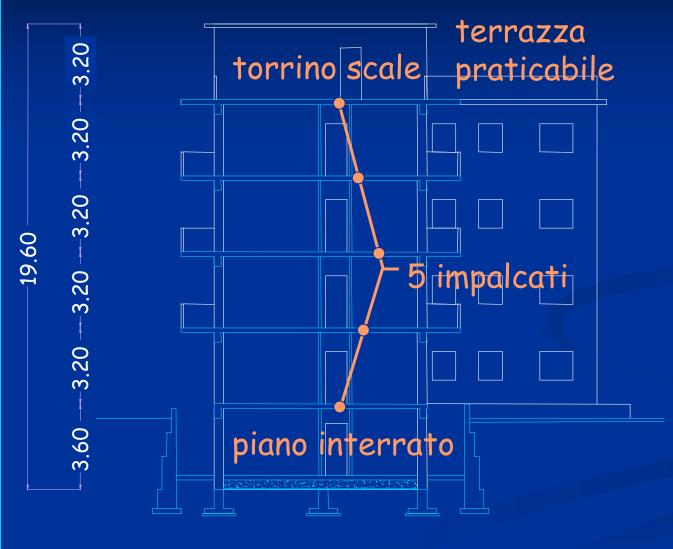
con struttura intelaiata in

cemento armato

in latero-cemento, gettati in

opera

a soletta rampante (tipologia


"alla Giliberti")

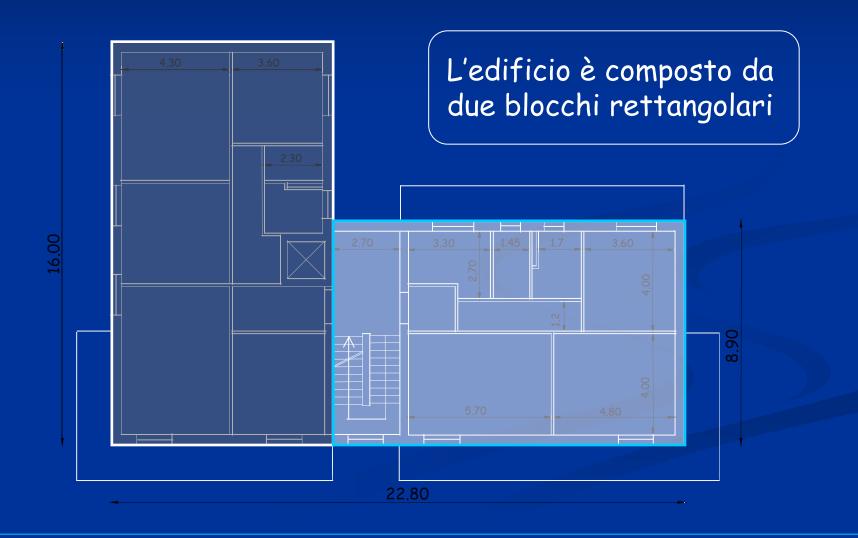
reticolo di travi rovesce

calcestruzzo $R_{ck} = 30 MPa$

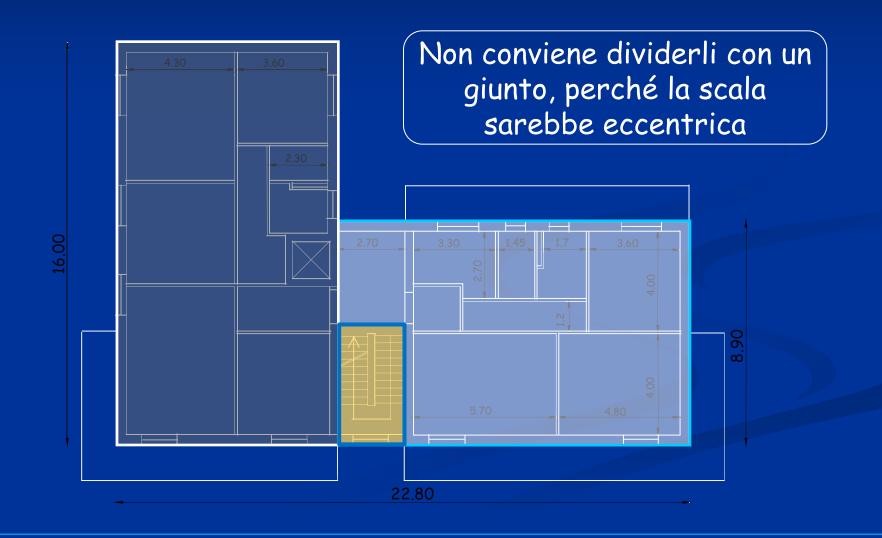
acciaio B450C

Edificio analizzato

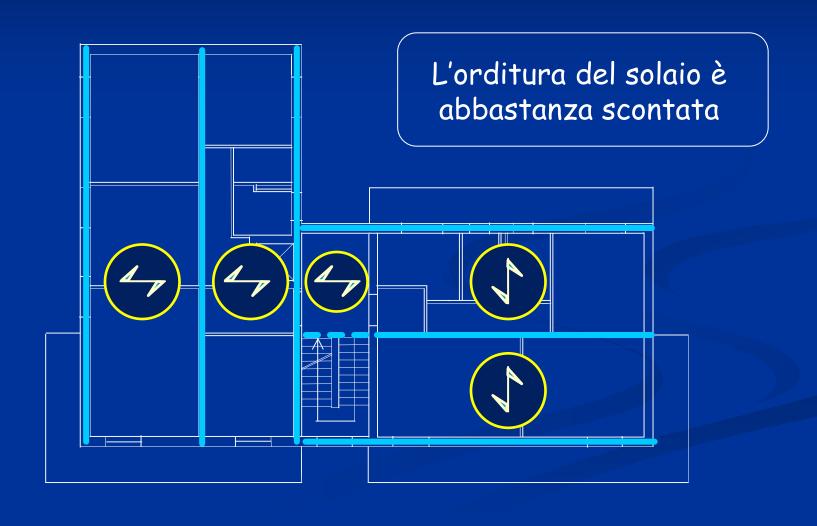
Sismicità media = (vecchia zona 2)

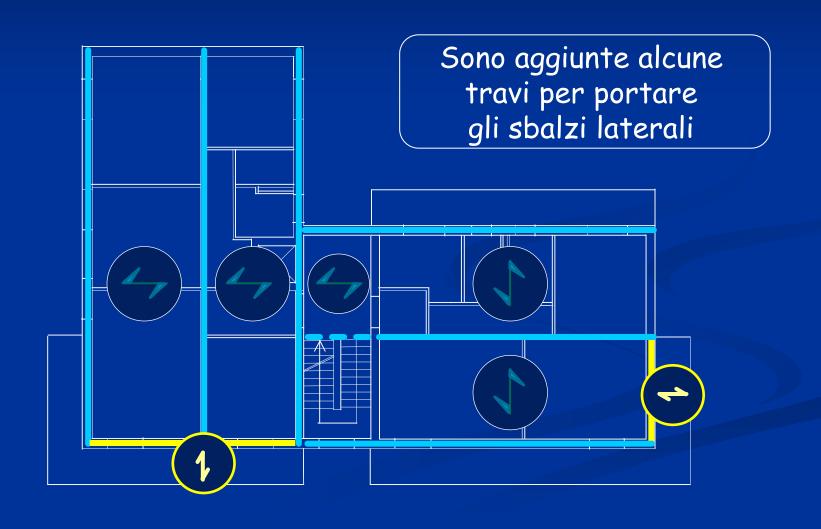

Terreno
costituito da
sabbie e ghiaie
mediamente
addensate

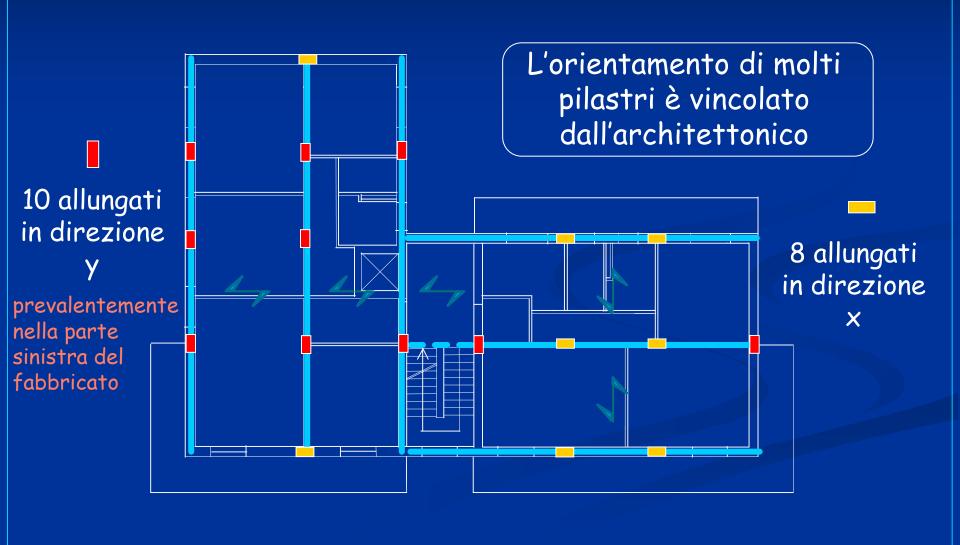
Sezione


Piano tipo

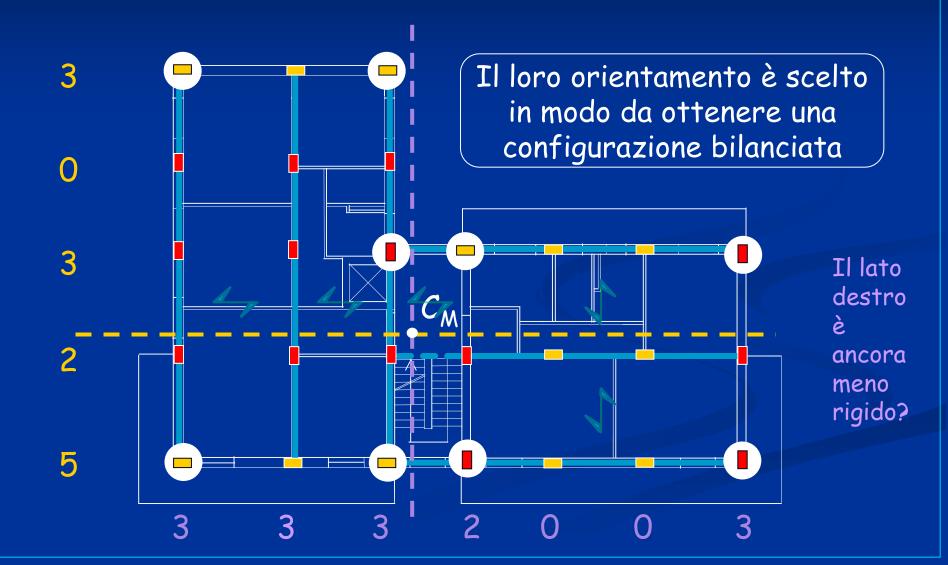
Piano tipo

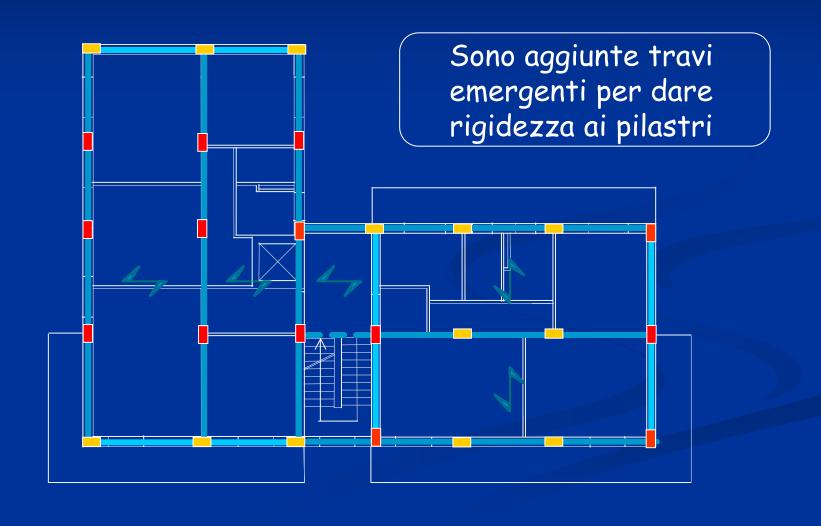

Piano tipo

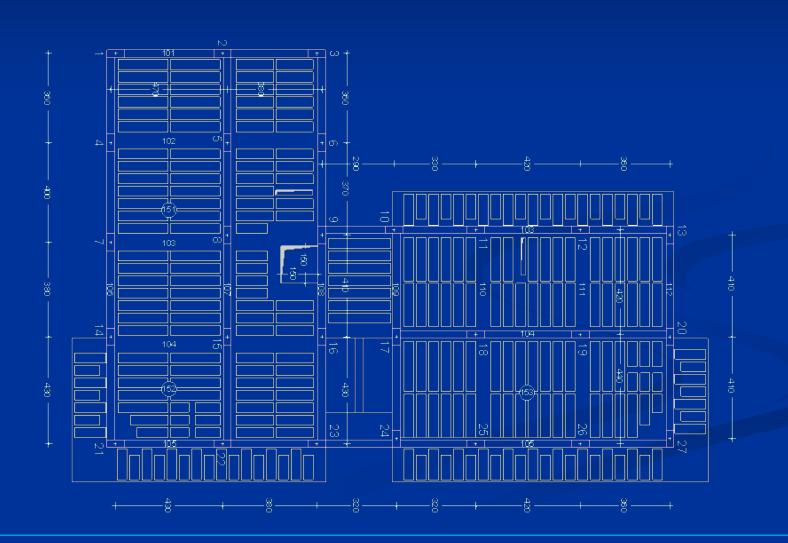

pensando ai carichi verticali



pensando ai carichi verticali




pensando ai carichi verticali



Carpenteria finale

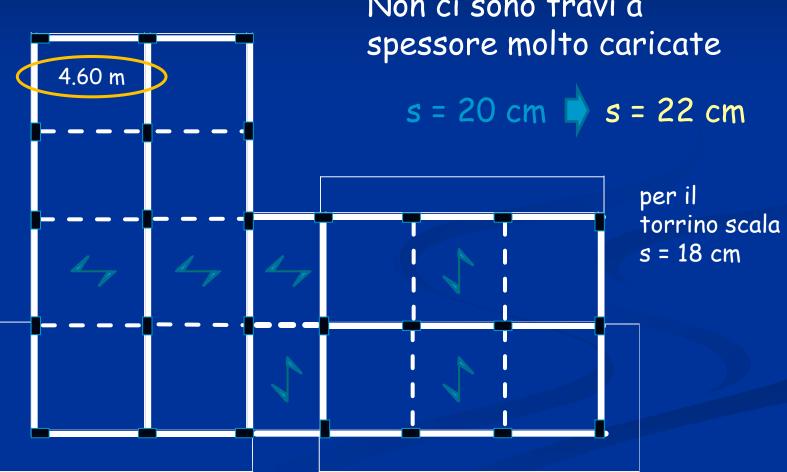
Dimensionamento delle sezioni e verifica di massima

Dimensionamento solaio

Il solaio deve trasmettere i carichi verticali alle travi, senza eccessive deformazioni

$$s \ge \frac{L_{\text{max}}}{25}$$

Lo spessore del solaio definisce l'altezza delle travi a spessore


Aumentare lo spessore del solaio in presenza di travi a spessore molto lunghe e caricate

L'impalcato (solaio più travi) deve trasmettere l'azione sismica agli elementi resistenti (telai)

È sufficiente una buona soletta di 4-5 cm con rete $\emptyset 8$ / 25x25

Esempio

Solaio

La luce massima delle campate di solaio è inferiore a 5.00 m

Non ci sono travi a

Carichi unitari

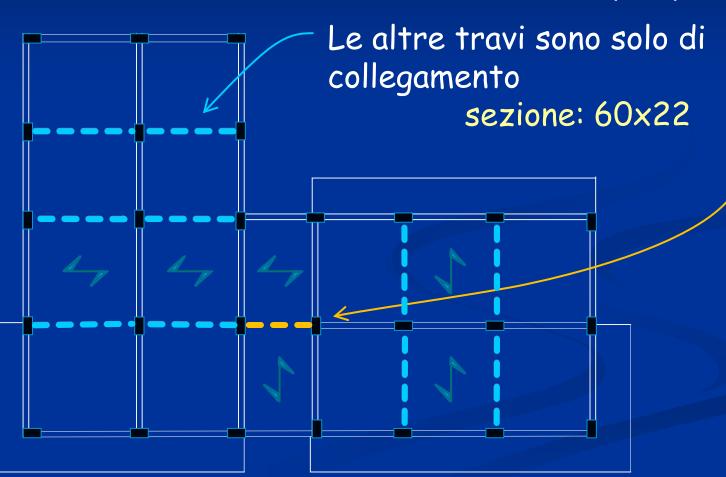
Una volta definito lo spessore, si possono calcolare i carichi unitari (kN/m²)

	g_k	q_k	SLU solo c.v	SLU con F
Solaio (kN/m²)	5.00	2.00	9.70	5.60
Sbalzo (kN/m²)	4.00	4.00	11.20	6.40
Scala (kN/m²)	5.00	4.00	12.50	7.40
Tamponatura (kN/m)	7.0		9.1	7.0
Peso proprio trave (kN/m)	4.0		5.2	4.0

Dimensionamento travi a spessore

Caso A. Più travi emergenti che travi a spessore

Dimensionare in base ai soli carichi verticali

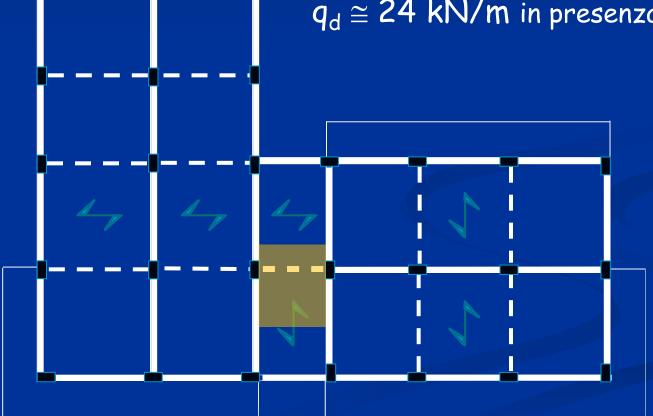

Caso B Tutte le travi sono a spessore

Aumentare l'altezza della trave (spessore del solaio) di 4-6 cm

Esempio

Dimensionamento travi a spessore

L'unica trave a spessore che porta carichi verticali ha luce modesta (3 m)


Esempio

Dimensionamento travi a spessore

La trave a spessore caricata porta circa 2.5 m di scala e 1 m di solaio

 $q_d \cong 41 \text{ kN/m}$ in assenza di sisma

 $q_d \cong 24 \text{ kN/m}$ in presenza di sisma

Dimensionamento travi a spessore

Momento per carichi verticali (in assenza di sisma)

$$M = \frac{q L^2}{12} = \frac{41 \times 3.0^2}{12} \cong 31 \text{ kNm}$$

Il momento totale (in presenza di sisma) certamente non è più grande

Momento per carichi verticali (in presenza di sisma)

$$M = \frac{q L^2}{12} = \frac{24 \times 3.0^2}{12} \cong 18 \text{ kNm}$$

Il momento per azione sismica è certamente molto piccolo

Dimensionamento travi a spessore

Dati:

Sezione rettangolare

b = da determinare

h = 22 cm

c = 4 cm

 $M_{Sd} = 31 \text{ kNm}$

Calcestruzzo $R_{ck} = 30 \text{ MPa}$

Calcolo della larghezza:

La sezione 60x22 va bene

$$b = \frac{r^2 M}{d^2} = \frac{0.019^2 \times 31}{0.18^2} = 0.35 \text{ m}$$

Dimensionamento travi emergenti

Si potrebbe stimare ad occhio il momento flettente di progetto delle travi più sollecitate

Metodo A

- il momento dovuto ai carichi verticali è facilmente prevedibile
- si incrementa forfettariamente il momento flettente prima ottenuto per tener conto della presenza delle azioni sismiche

Metodo B

- In alternativa (metodo più preciso) ...

Consigli:

1. Dimensionare la sezione del primo ordine in modo che la tensione media N/A_c non superi:

in presenza di sisma

O.35 f_{cd}

se si prevedono momenti flettenti
non troppo elevati
(zona 2, suolo B C E, q non troppo basso)

 $0.30 f_{cd}$ se si prevedono momenti flettenti più elevati

Consigli:

- 2. Usare per i diversi pilastri del primo ordine un numero basso di tipi di sezione (max 2 o 3) ed evitare eccessive differenze di momento d'inerzia
 - ✓ Quindi cercare di mantenere più o meno la stessa altezza delle sezioni e variare la base

Consigli:

- 3. Ridurre gradualmente la sezione andando verso l'alto
 - ✓ Limitare le variazioni di sezione, che sono sempre possibile causa di errori costruttivi
 - ✓ Evitare forti riduzioni di tutti i pilastri ad uno stesso piano
 - ✓ Mantenere una dimensione adeguata, non troppo piccola, anche ai piani superiori

Esempio Pilastro interno

Carico: 8 m di trave 21 m² di solaio

Carico al piano: 150 kN Sforzo normale al piede, incluso peso proprio: 830 kN

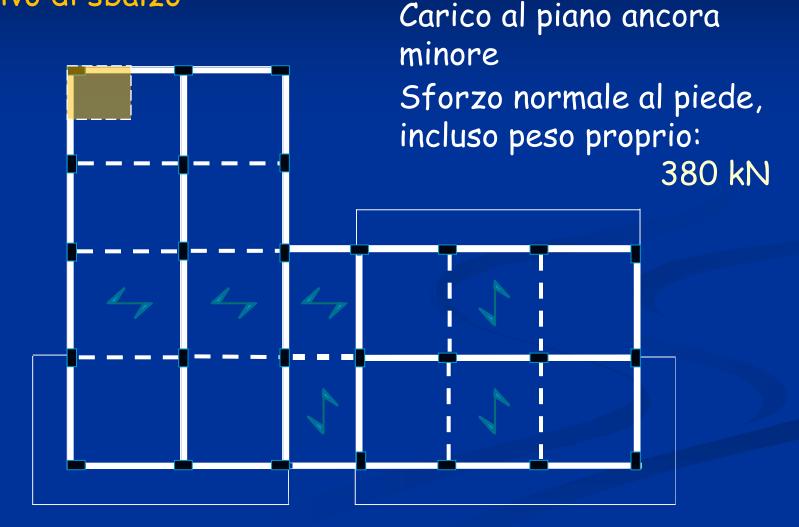
Pilastro laterale con sbalzo pilastro d'angolo con sbalzi

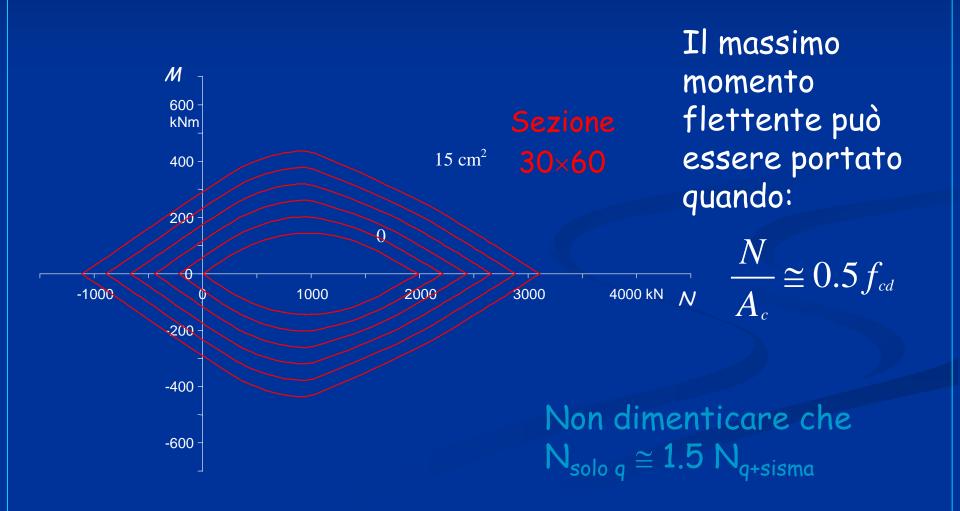
Carico:

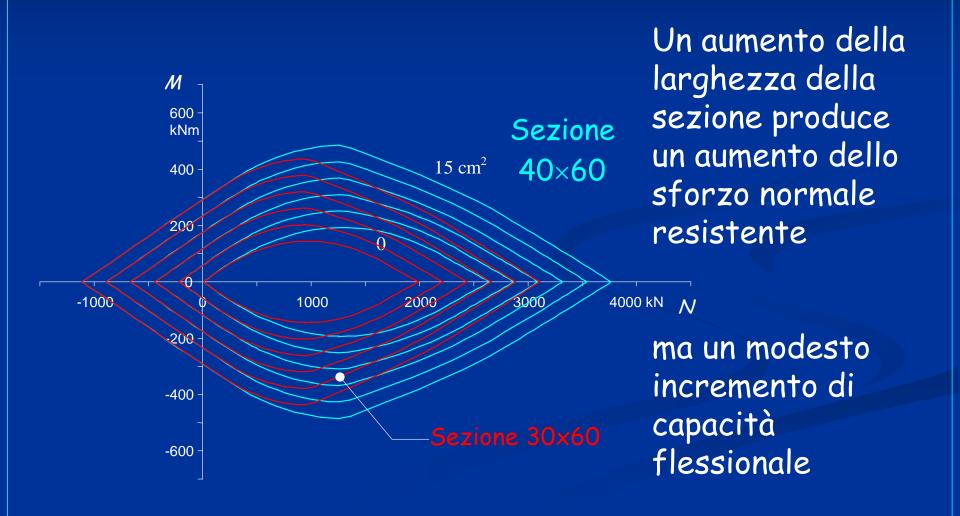
Più o meno lo stesso

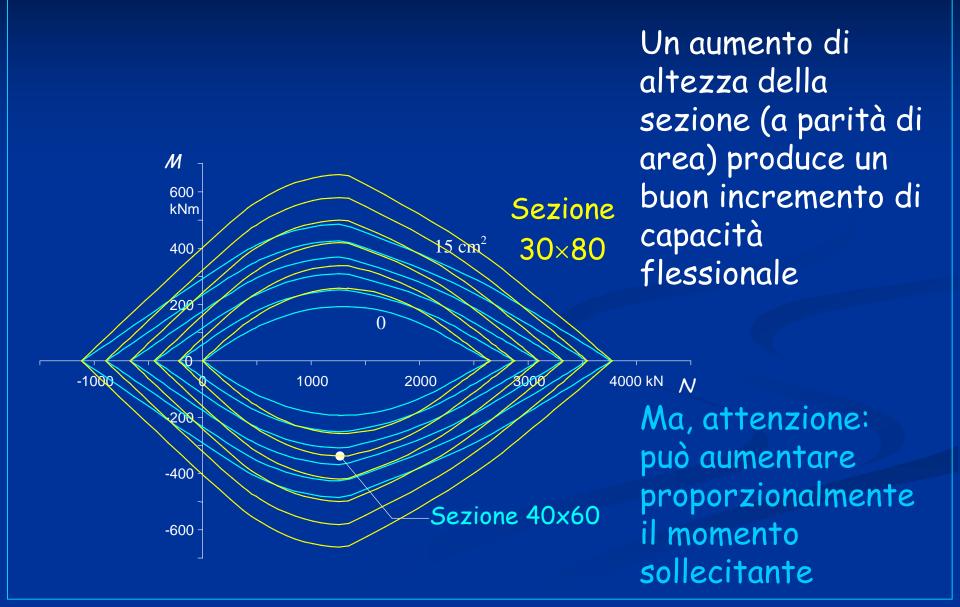
Pilastro interno in corrispondenza della scala

Carico:


Di più, a causa del torrino




Pilastro laterale privo di sbalzo
o d'angolo con uno sbalzo
Carico minore al piano



Pilastro d'angolo privo di sbalzo

Dimensionamento pilastri (alta duttilità)

Tipo di pilastro	N _{Sd} (SLU con F)	A _c
Pilastri più caricati (20)	830 - 1050 kN	1650-2090 cm ²
Pilastri perimetrali senza sbalzo (5)	600 kN	1210 cm ²
Pilastri d'angolo senza sbalzo (2)	380 kN	770 cm ²

Se si prevedono sollecitazioni non troppo alte (zona 2, suolo C)

$$A_c = \frac{N_{Sd}}{0.35 f_{cd}} \cong \frac{N_{Sd}}{5.0} \times 10^{-3}$$

Dimensionamento pilastri

Tipo di pilastro	N _{Sd}	A _c	Sezione minima	Sezione scelta
Pilastri caricati (20)	830 - 1050 kN	1650-2090 cm ²	30 x 70	30 x 70
Pilastri perimetrali (5)	600 kN	1210 cm ²	30 x 50	30 x 70
Pilastri d'angolo (2)	380 kN	770 cm ²	30 x 30	30 x 70

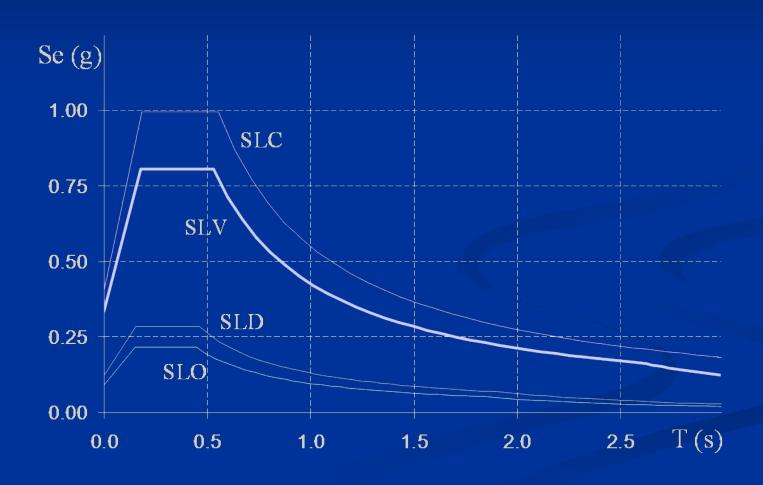
La sezione 30 x 70 non crea problemi architettonici e permette una più uniforme distribuzione delle azioni sismiche.

Dimensionamento pilastri

Variazione di sezione lungo l'altezza

La sezione 30×70 non crea problemi architettonici e non comporta costi eccessivi

quindi la si può mantenere invariata per tutta l'altezza


Solo per il torrino scala: sezioni 30x50

Spettri di risposta elastica

$$T_{R} = \frac{V_{R}}{\ln\left(1 - P_{V_{R}}\right)} \begin{cases} 0.81 \text{ SLO} \\ 0.63 \text{ SLD} \\ 0.10 \text{ SLV} \\ 0.05 \text{ SLC} \end{cases}$$

T _R (anni)	а _g (g)	F_0	T _C *
30	0.061	2.360	0.280
50	0.082	2.316	0.292
475	0.250	2.410	0.360
975	0.339	2.445	0.383

Spettri di risposta elastica

Fattore di struttura $q = q_0 K_R$

$$q = \left(q^* \quad K_{\alpha} \quad K_{D}\right) K_{R}$$

Dipende da:

- Duttilità generale della tipologia strutturale
- Rapporto tra resistenza ultima e di prima plasticizzazione
- Classe di duttilità dell'edificio
- Regolarità in elevazione

Tipologia strutturale (edifici in cemento armato)

6 CD"B" CD "A"

Struttura a telaio 3.0 α_u/α_1 4.5 α_u/α_1

Attenzione II progettista deve scegliere, a priori, quale classe di duttilità adottare

Sovraresistenza (edifici in cemento armato)

α_u/α_1

Telaio a 1 piano	1.1
Telaio a più piani, una campata	1.2
Telaio a più piani, più campate	1.3

Oppure effettuare analisi statica non lineare

Regolarità in altezza (edifici in cemento armato)

KR

Edifici regolari in altezza 1.0

Edifici non regolari in altezza 0.8

La regolarità in altezza deve essere valutata a priori, guardando la distribuzione delle masse e le sezioni degli elementi resistenti, ma anche controllata a posteriori

Regolarità in altezza

Si noti inoltre che:

- il controllo delle masse può essere effettuato a priori, all'inizio del calcolo
- il controllo sulla rigidezza e sulla resistenza può essere effettuato solo a posteriori, dopo aver effettuato il calcolo e la disposizione delle armature

Ritengo che l'edificio in esame possa considerarsi sostanzialmente regolare in altezza:

$$K_{R} = 1.0$$

Spettro di progetto

È ottenuto dividendo lo spettro di risposta elastica per il fattore di struttura q

$$q = q_0 K_R$$

Nell'esempio:

$$q_0 = (3.0 \text{ o } 4.5) \alpha_u / \alpha_1$$

$$\alpha_{\rm u}/\alpha_1 = 1.3$$

$$K_R = 1$$

Attenzione regolarità in pianta!!

struttura intelaiata in c.a. a bassa o alta duttilità

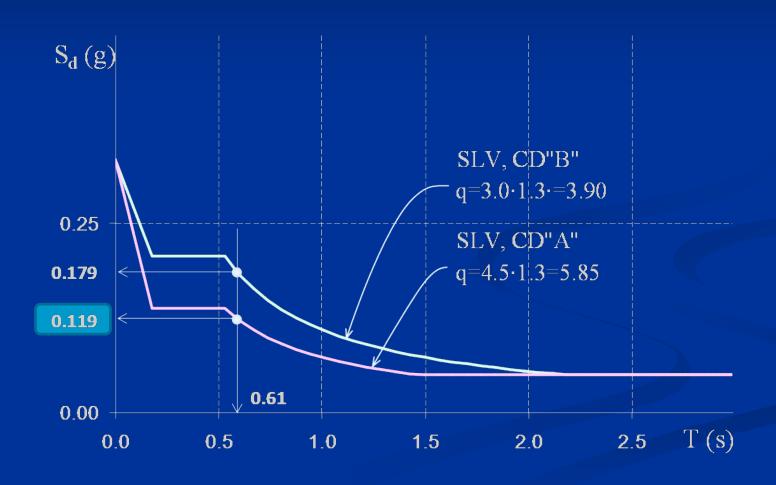
telaio con più piani e più campate la struttura è regolare in altezza

Spettro di progetto

Ordinata spettrale

Dipende dal periodo

$$T_1 = C_1 H^{3/4}$$


$$C_1 = 0.075$$

per strutture intelaiate in c.a.

H = altezza dell'edificio dal piano di fondazione (m)

$$T_1 = 0.075 \times 16.40^{3/4} = 0.61 \text{ s}$$

Ordinata spettrale

Masse

In un edificio in conglomerato cementizio armato il peso delle masse di piano corrisponde in genere ad una incidenza media di 8÷11 kN/m²

Una valutazione di prima approssimazione del peso delle masse a ciascun piano può essere ottenuta moltiplicando la superficie totale dell'impalcato per 10 kN/m^2 (9 kN/m² in copertura, per la minore incidenza delle tamponature)

Masse

La superficie degli impalcati nell'edificio in esame è

Torrino sca	la:	S =	48.0 m ²
1011110000			

V impalcato:
$$S = 331.9 \text{ m}^2$$

Piano tipo:
$$S = 323.5 \text{ m}^2$$

Per il piano terra:
$$S = 263.2 \text{ m}^2$$

Nota: il torrino scala può essere accorpato al 5° impalcato, ottenendo

Torrino + V impalcato:
$$S = 379.9 \text{ m}^2$$

Masse

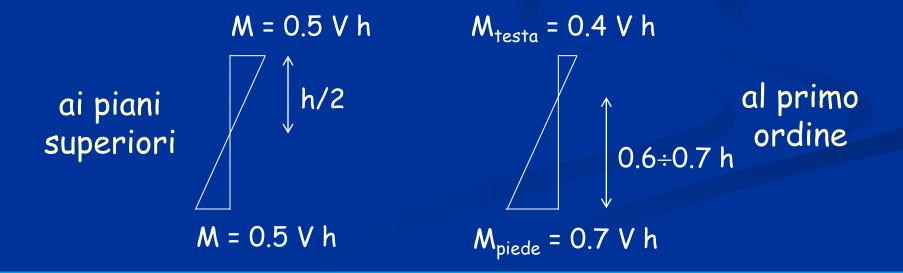
Impalcato	Superficie m ²	Incidenza kN/m²	Peso kN
Torrino + V	379.9	9.0	3419
IV, III, II	323.5	10.0	3235
	263.2	10.0	2632

Peso totale = 15756 kN

Forze per analisi statica

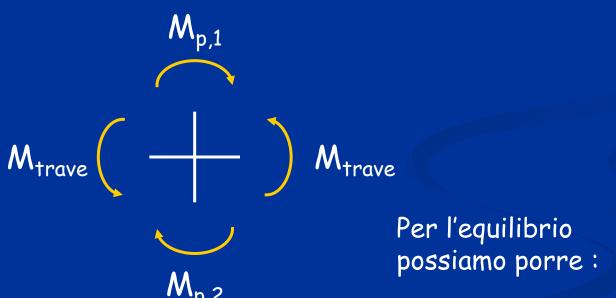
Taglio alla base
$$V_b = 0.85 \sum_{i=1}^{n} m_i S_d(T_1) =$$

= $0.85 \times 15756 \times 0.119 = 1593.7 \text{ kN}$


Forza al piano
$$F_k = \frac{m_k z_k}{\sum_{i=1}^n m_i z_i} V_b$$

Forze per analisi statica

Piano	Peso W (kN)	Quota z (m)	W-z (kNm)	Forza F (kN)	Taglio V (kN)
5+torrino	3419	16.40	56072	549.6	549.6
4	3235	13.20	42702	418.6	968.2
3	3235	10.00	32350	317.1	1285.3
2	3235	6.80	21998	215.6	1500.9
1	2632	3.60	9475	92.9	1593.7
somma	15756		162597		

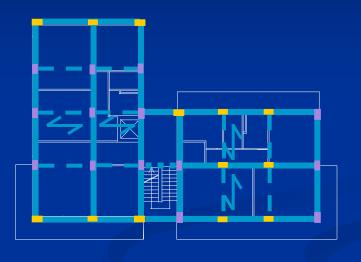

Come prevedere le sollecitazioni?

- 1. Ripartire il taglio di piano tra i pilastri "che contano" (pilastri allungati nella direzione del sisma e collegati con una trave emergente)
- 2. Valutare il momento nei pilastri

Come prevedere le sollecitazioni?

3. Valutare i momenti nelle travi

 $M_{\text{trave}} = \frac{M_{p,1} + M_{p,2}}{2}$


Come prevedere le sollecitazioni?

4. Incrementare i momenti per tenere conto dell'eccentricità accidentale

Se la struttura è sufficientemente rigida torsionalmente, incrementare del 20%

1 - Ripartizione

Piano	Taglio globale incr. (kN)
5	659.5
4	1161.8
3	1542.4
2	1801.1
1	1912.6

I pilastri (tutti uguali) sono: 13 allungati in direzione x 14 allungati in direzione y

Ripartisco il taglio globale tra 13 pilastri (direzione x)

1 - Ripartizione

Piano	Taglio globale (kN)	Taglio pilastro (kN)
5	659.5	50.7
4	1161.8	89.4
3	1542.4	118.6
2	1801.1	138.5
1	1912.6	147.1

Volendo, potrei ridurre il taglio di un 20%, per tener conto del contributo dei pilastri "deboli"

2 – Momento nei pilastri

Piano	Taglio globale (kN)	Taglio pilastro (kN)	Momento pilastro (kNm)	M = V h /2
5	659.5	50.7	81.1	
4	1161.8	89.4	143.0	
3	1542.4	118.6	189.8	M V 0 4 I
2	1801.1	138.5	221.6	M = V 0.4 h
1 testa	1912.6	147.1	211.8	M = V 0.7 h
piede			370.7	

3 – Momento nelle travi

Piano	Taglio globale (kN)	Taglio pilastro (kN)	Momento pilastro (kNm)	Momento trave (kNm)	$M_{t} = M_{p5}/2$
5	659.5	50.7	81.1	40.6	$M_{\dagger} =$
4	1161.8	89.4	143.0	112.1	$(M_{p5} + M_{p4})/2$
3	1542.4	118.6	189.8	166.4	
2	1801.1	138.5	221.6	205.7	
1 testa	1912.6	147.1	211.8	216.7	
piede			370.7		

4 – Incremento per gerarchia delle resistenze

Piano	Taglio globale (kN)	Taglio pilastro (kN)	Momento pilastro (kNm)	Momento trave (kNm)	M _{pil} con gerarchia (kNm)
5	659.5	50.7	81.1	40.6	121.7
4	1161.8	89.4	143.0	112.1	214.6
3	1542.4	118.6	189.8	166.4	284.6
2	1801.1	138.5	2216	205.7	332.4
1 testa	1912.6	147.1	211.8	216.7	317.7
piede			370.7		370.7

I momenti di progetto dei pilastri sono ottenuti da quelli dell'analisi moltiplicandoli per 1.5

Dimensionamento travi emergenti

Situazione sismica di progetto

Le sollecitazioni da sisma sono elevate ai piani inferiori e centrali

Le sollecitazioni da sisma si riducono di molto ai piani superiori

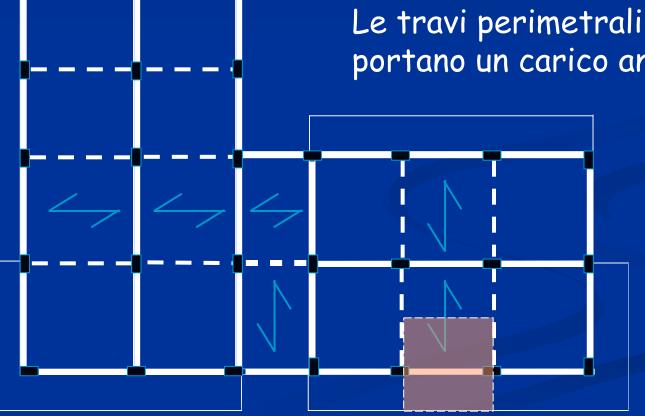
Ma avere travi rigide aiuta comunque i pilastri

Travi emergenti

Le travi di spina portano circa 5 m di solaio

 $q_d \cong 55 \text{ kN/m}$ in assenza di sisma

 $q_d \cong 33 \text{ kN/m}$ in presenza di sisma


Travi emergenti

Le travi di spina portano circa 5 m di solaio

 $q_d \cong 55 \text{ kN/m}$ in assenza di sisma

 $q_d \cong 33 \text{ kN/m}$ in presenza di sisma

portano un carico analogo

Dimensionamento travi emergenti

Momento per carichi verticali (con sisma)

$$M = \frac{q L^2}{10} = \frac{33 \times 4.30^2}{10} \cong 60 \text{ kNm}$$

Momento per azione sismica

$$M = 275 \, kNm$$

Momento massimo, totale

$$M = 60 + 275 = 335 \, kNm$$

Dimensionamento travi emergenti

Dati:

Sezione rettangolare

b = 30 cm

h = da determinare

c = 4 cm

 $M_{Sd} = 335 \text{ kNm}$

Calcestruzzo $R_{ck} = 30 \text{ MPa}$

Calcolo dell'altezza utile:

sezione: 30x70

$$d = r\sqrt{\frac{M}{b}} = 0.019 \sqrt{\frac{335}{0.30}} = 0.64 m$$

Dimensionamento travi emergenti

Dati:

Sezione rettangolare

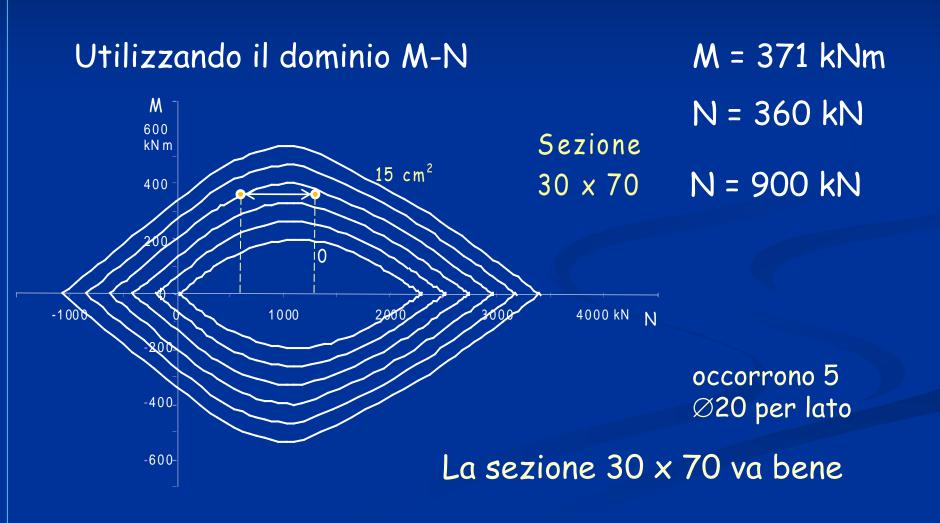
b = 30 cm

h = da determinare

 $M_{Sd} = 335 \text{ kNm}$

Calcestruzzo $R_{ck} = 30 \text{ MPa}$

Calcolo dell'altezza utile sezione: 30x60 (armatura compressa uguale al 50% di quella tesa):


$$d = r\sqrt{\frac{M}{b}} = 0.014 \sqrt{\frac{335}{0.30}} = 0.47 \ m$$
 all'ultimo impalcato 30x50

Verifica pilastri (pilastri uguali)

Piano	Taglio globale (kN)	Taglio pilastro (kN)	M _{pil} con gerarchia (kNm)	Momento trave (kNm)
5	659.5	50.7	121.7	40.6
4	1161.8	89.4	214.6	112.1
3	1542.4	118.6	284.6	166.4
2	1801.1	138.5	332.4	205.7
1 testa	1912.6	147.1	317.7	216.7
piede			370.7	

Sezione più sollecitata

Verifica pilastri (pilastri uguali)

Verifica allo stato limite di danno

Spostamenti relativi

$$F_{i,SLD} = F_{i,SLV} \frac{S_{e,SLD}(T_1)}{S_{d,SLV}(T_1)}$$
 0.215g

Spostamenti relativi

$$d_r = \frac{Vh_r^3}{12E\sum I_p} \left[1 + \frac{l_{media}}{h_r} \left(\frac{\sum I_p}{\sum I_{t,\text{sup}}} + \frac{\sum I_p}{\sum I_{t,\text{inf}}} \right) \frac{1}{2} \right]$$

Verifica spostamenti relativi

Piano	Taglio (kN)	Altezza interpiano (m)	Spostamento (mm)	Limite (mm)
5	987.1	3.20	2.57	16
4	1738.9	3.20	3.68	16
3	2308.4	3.20	4.88	16
2	2695.6	3.20	5.70	16
1	2862.5	3.60	5.59	18

Dimensionamento e verifica di massima dell'edificio a bassa duttilità

Cosa cambia?

Il solaio e, dunque, i carichi unitari sono gli stessi

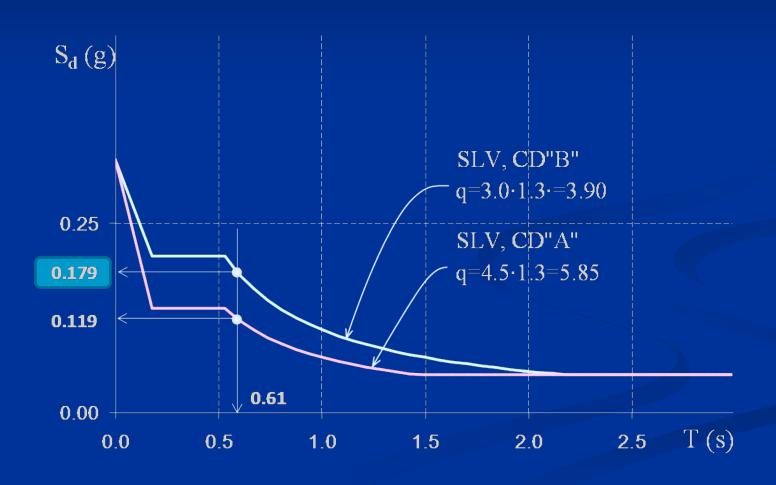
Il fattore di struttura è più piccolo ...

Fattore di struttura

$$q = q_0 K_R$$

Nell'esempio:

 q_0 = 3.0 α_u/α_1 struttura intelaiata in c.a.


 α_u/α_1 = 1.3 telaio con più piani e più campate

 $K_R = 1.0$ la struttura è regolare in altezza

Si calcola:

q = 3.90 (prima era 5.85)

Ordinata spettrale

Cosa cambia?

Il solaio e, dunque, i carichi unitari sono gli stessi

Il fattore di struttura è più piccolo ...

Le forze e le sollecitazioni dovute al sisma sono pari al 150% di quelle dell'edificio ad alta duttilità

Le sollecitazioni dei pilastri vanno calcolate con criterio di gerarchia delle resistenze

Come prevedere le sollecitazioni?

- Determinare i momenti dovuti al sisma incrementati per tenere conto dell'eccentricità accidentale
- Incrementare i momenti nei pilastri (tranne che alla base); in linea di massima moltiplicare per 1.3

Edificio a bassa duttilità

Piano	Taglio globale (kN)	Taglio pilastro (kN)	Momento pilastro (kNm)	Momento trave (kNm)	M _{pil} con gerarchia (kNm)
5	989.3	76.3	122.1	61.0	158.7
4	1742.7	134.4	215.0	168.6	279.6
3	2313.6	178.5	285.6	250.3	371.3
2	2701.7	208.4	333.4	309.5	433.5
1 testa	2868.9	221.3	318.7	326.1	414.3
piede			557.7		557.7

I momenti di progetto dei pilastri sono ottenuti da quelli dell'analisi moltiplicandoli per 1.3

Dimensionamento travi emergenti

Momento per carichi verticali (con sisma)

$$M = \frac{q L^2}{10} = \frac{33 \times 4.30^2}{10} \cong 60 \text{ kNm}$$

Momento per azione sismica

$$M = 326 \text{ kNm}$$

Momento massimo, totale

$$M = 60 + 326 \cong 390 \text{ kNm}$$

Dimensionamento travi emergenti

Dati:

Sezione rettangolare

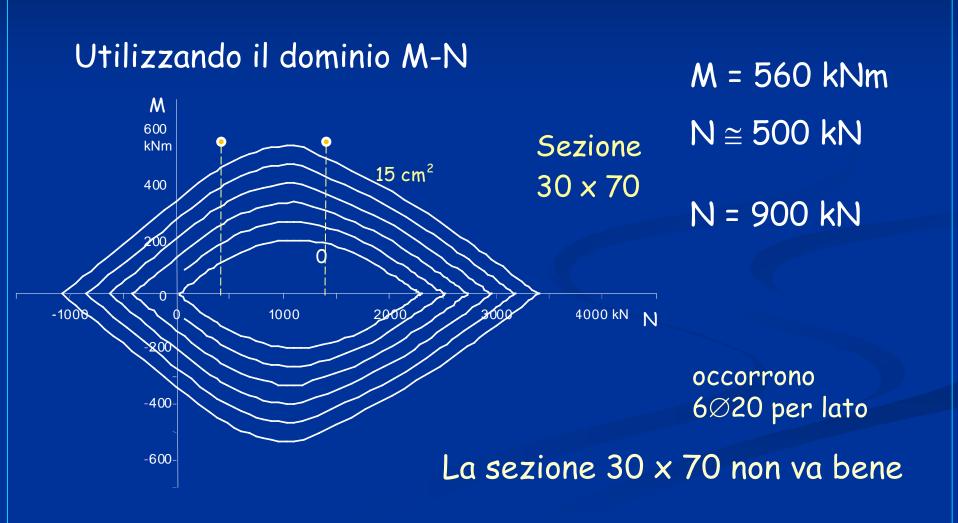
b = 30 cm

h = da determinare

c = 4 cm

 $M_{Sd} = 390 \text{ kNm}$

Calcestruzzo $R_{ck} = 30 \text{ MPa}$


sezione: 30x70

Calcolo dell'altezza utile:

 $d = r\sqrt{\frac{M}{h}} = 0.019 \sqrt{\frac{390}{0.30}} = 0.69 m$

all'ultimo impalcato 30x50

Verifica pilastri

$$A_c = \frac{N_{sd}}{0.3f_{cd}} \cong \frac{N_{sd}}{4.3} \times 10$$

Tipo di pilastro	N _{Sd}	A _c	Sezione minima	Sezione scelta
Pilastri molto caricati (2)	1050 kN	2470 cm ²	40 x 70	40 x 70
Pilastri caricati (18)	830 kN	1953 cm ²	40 x 60	40 x 70
Pilastri perimetrali (5)	600 kN	1411 cm ²	30 (60	30 x 70
Pilastri d'angolo (2)	380 kN	894 cm ²	30 x 40	30 x 70

FINE